Hal	ll Tick	t Number:	
		Code No.: 3221	2
-	V.	SAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD	
		B.E. (E.E.E.) III Year II-Semester Main Examinations, May-2017	
	Tim	Electrical Machinery-III 3 hours Note: Answer ALL questions in Part-A and any FIVE from Part-B Max. Marks: 70	
		Part-A ($10 \times 2 = 20 \text{ Marks}$)	
	1.	Explain how harmonics are suppressed in synchronous machine.	
	2.	List out the advantages of fractional slot windings.	
	3.	What are direct axis reactance (X_d) and quadrature axis reactance (X_q) ?	
	4.	What are the conditions to be satisfied for parallel operation of synchronous generators?	
	5.	Explain about hunting in a synchronous motor	
	6.	What is reluctance power?	
	7.	Draw the complete wave form of symmetrical short circuit current in a synchronous machine.	
	8.	Mention any two applications of switched reluctance motor.	
	9.	Explain why a single phase motor is not self starting.	
	10.	Explain what happens if a DC series motor is connected to AC supply.	
		Part-B $(5 \times 10 = 50 \text{ Marks})$	
	11.	a) Derive the EMF equation of an alternator.	[5]
		b) A 3-phase, 16 pole star connected synchronous generator has a resultant air gap flux of 0.06 Wb per pole. The flux is distributed sinusoidally over the pole. The stator has three slots per pole per phase and 4 conductors per slot. The coil span is 150° electrical. Calculate the phase and line induced voltages when the machine runs at 375 rpm.	[5]
	12.	a) Discuss the potier triangle method of finding voltage regulation of an alternator.	[7]
		b) Explain the synchronization of two alternators by using three dark lamp method.	[3]
	13.	a) Describe the effect of varying excitation upon armature current and power factor of a synchronous motor when input power to the motor is maintained constant.	[5]
		b) A 3-phase, 3300 V, 50 Hz star connected synchronous motor takes 40 A current. Its synchronous reactance is 20 Ω per phase. Find the power supplied to the motor and induced e.m.f for 0.8 lagging power factor. Neglect armature resistance.	[5]
	14.	a) A 100 MVA, 11 kV, 3-phase star connected alternator is running at synchronous speed with rated voltage. Its terminals are open circuited. A sudden 3-phase fault develops at its terminals. The per unit reactances are $X_d = 1.0$, $X_d^1 = 0.25$, $X_d^{11} = 0.12$. The time constants are $T_d^1 = 1.1$ sec, $T_d^{11} = 0.04$ sec. The initial dc component of current is such that the total current is 1.5 times of the initial ac component of current. Find	[6]
		 i) AC component of current at the instant of short-circuit. ii) Total current at the instant of short-circuit. iii) AC component of current after 2 cycles. 	
	i	b) Discuss construction and principle of operation of permanent magnet stepping motor.	[4]

15. a) Explain double field revolving theory and obtain the equivalent circuit of single phase [5] motor. b) Explain the construction and principle of operation of permanent capacitor single phase [5] induction motor and its applications. 16. a) Explain, why synchronous impedance method of computing the voltage regulation leads [3] to pessimistic values. b) Explain two reaction theory of salient pole alternator. [7] 17. Answer any two of the following: a) Write short notes on synchronous condenser. [5] b) Explain briefly construction and principle of operation of switched reluctance motors. [5] c) Explain construction and principle of operation of shaded pole motor. [5]

(अ(अ(अ(अ)क)क)

and A 3-share I in noting our accompanion workers and a state of a state of A (d)